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Abstract - Federated learning (FL) is a game-changing methodology for distributed machine learning that allows training 

models across many edge devices without centralizing sensitive data. Here, this technique is especially useful for privacy-

sensitive applications like financial, healthcare, or IoT, where the technique helps solve the issue of predictive analytics. 

However, the communication and coordination of models between distributed nodes remains a critical issue. In this paper, the 

role of the API architectures in providing the federation learning workflows with a focus on REST and GraphQL are analyzed. 

Rest APIs are widely popular because of their simplicity and stateless nature, which lends them to lightweight communication 

in FL environments. 

Nevertheless, GraphQL gives clients more flexibility and greater efficiency by allowing them to just ask for the 

information they require, rather than fetching all data as in a traditional setup, which is a very important feature for 

decentralized systems. In the FL context, we consider data synchronization, model aggregation, and access controls and 

analyze the performance, security, and scalability of the two API paradigms. We also discuss how to best design APIs for such 

federated model training while meeting data protection regulations. This study compares the flexibility of REST and GraphQL 

to distributed models of artificial intelligence in providing insights on best practices of API design for decentralized federated 

prediction. 

Keywords - Federated Learning, REST API, GraphQL, Decentralized Machine Learning, Predictive Analytics, API 

Architectures, Model Aggregation. 

1. Introduction 

The predictive analytics industry has struggled to 

successfully apply classification models to data residing in 

distributed systems across edge devices, IoT networks and 

enterprise systems, as the growth in data means is happening 

so fast. Most of the traditional machine learning approaches 

depend on data aggregation in a centralized way and thus 

create issues in terms of privacy, security, and data 

protection regulation compliance. Since raw data do not need 

to be sent to a central server, [1-3] Federated Learning (FL) 

provides an attractive solution for training machine learning 

models in a decentralized way across multiple nodes. Despite 

preserving privacy, this approach makes it possible to build 

robust predictive models. Nevertheless, federated learning 

requires efficient communication, which means sharing 

models, aggregating them, and synchronizing them. 

1.1. The Role of API Architectures in Federated Learning 

Federated communication systems come in the form of 

Application Programming Interfaces (APIs), which allow for 

easy communication between client devices, model 

aggregators, and central servers. The stateless design, 

simplicity and scalability of REST (Representational State 

Transfer) APIs have been longstanding dominant 

architecture. In particular, their structure will be rigid in 

federated environments where data exchange ‘on the spot’ 

may imply a diverse set of needs between different clients. 

Since GraphQL is a more flexible alternative allowing clients 

to request the data field they need, bandwidth consumption 

and redundant transmissions can be reduced. To design 

efficient decentralized predictive analytics systems, it is 

important to understand how the abovementioned API 

architectures affect the performance of federated learning. 

 

1.2. Challenges in Decentralized Predictive Analytics 

Federated learning inherently faces a number of 

challenges, such as communication overhead, data 

heterogeneity and security risk. All too often, using an API 

frequently necessitates the exchange of model updates 

between many nodes - high bandwidth consumption makes 
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performance optimization crucial to doing this efficiently. In 

addition, the data sources, device capabilities, and network 

conditions federated systems need to support are diverse and 

need adaptable communication frameworks. Second, it is a 

major concern with respect to security, as FL models to this 

day remain susceptible to adversarial attacks, model 

poisoning, and data leakage. In API architectures, the 

authentication, encryption and access control mechanisms 

have to be robust to mitigate these risks. 

 

2. Related Work 
2.1. Federated Learning Frameworks 

Federated Learning (FL) has become increasingly 

popular because it allows training the machine learning 

models across distributed data sources without moving 

sensitive data to a central repository. Several FL frameworks, 

including Tensor Flow Federated (TFF), are created. 

Through two core API layers, Federated Core (FC) API and 

Federated Learning (FL) API, TFF is devised to [4-6] enable 

decentralized machine learning with a low-level API to 

define computations distributed and a high-level API for 

seamless integration of existing machine learning models 

with federated workflows. With a layered approach, FL 

solutions can be jointly developed and deployed efficiently 

by AI researchers and systems engineers. 

 

FL frameworks include PySyft, which secures and 

retains the privacy of the federated learning in a way that 

utilizes encrypted model updates, and FedML, an open 

research orient themselves library for federated learning and 

various computing environments. On the other hand, FL has 

also been looked into where models are trained locally on 

devices and centrally aggregated at the server. The proposed 

researchers have suggested using REST APIs to 

communicate with central servers and the edge nodes to 

perform the model training without compromising privacy. 

Such architectures are highly relevant in domains where it is 

not feasible to store centralized data for legal or technical 

reasons (e.g., healthcare, finance). 

 

2.2. API Architectures: REST vs. GraphQL 

Federated learning is the API that enables efficient 

communication between participating nodes. REST APIs are 

traditionally the main architecture used in client-server 

interaction; they are stateless and scalable approaches. Since 

REST APIs have fixed endpoints for retrieving and updating 

resources, they are simple and widely compatible. REST, 

however, suffers from over-fetching (getting too much 

information) and under-fetching (requiring multiple requests 

to gather complete information), making the bandwidth-

sensitive FL environment inefficient. 

 

GraphQL offers a more dynamic and flexible API that 

allows clients to express exactly what they need with the 

same request. Unlike REST, where multiple endpoints are 

required for different resources, GraphQL performs via a 

single endpoint, which is more efficient and saves costs in 

sending and receiving data. GraphQL’s strongly typed 

schema also helps with the accuracy and validation of 

queries and API documentation. GraphQL is also useful in 

federated learning, where federated APIs can be created 

using different services’ schemas as a unified API. This 

approach improves modularity, scalability, and adaptability 

in FL deployments. 

 

2.3. Architectural Patterns in Federated Learning 

Federated learning architectures are influenced 

extensively by their design, which in turn highly affects the 

performance, scalability, and security of these architectures. 

Different studies have proven that microservice-based 

architecture is a suitable approach for FL. Structured as 

microservices to support workload distribution and system 

maintainability, separate components of FL (model 

aggregation, client coordination, and API communication in 

particular) allow organizations to reduce their component 

complexity and maintain their efficiency. Furthermore, 

microservices allow for greatly improving fault isolation and 

resource optimization on such large-scale federated 

deployments. Architectural pattern pull in the techniques of 

differential privacy in federated learning pipelines. In 

differential privacy, model updates are first aggregated while 

adding the controlled noise on individual client 

contributions, allowing the contributions of individual clients 

to remain anonymous. With this approach, the regulatory 

compliance level of data protection laws like GDPR and 

HIPAA is improved, as well as ensuring the user's trust. In 

order to achieve differential privacy within FL frameworks, a 

significant need for careful API design is in handling secure 

aggregation, encrypted data transmission, as well as privacy-

preserving computations. 

 

3. Methodology 

3.1. API Architectures 

The integration was made possible with REST and 

GraphQL APIs in the Federated Learning (FL) system for 

decentralized model training and predictive analytics. The 

architecture has several core components, including a central 

server, data services, an API layer, and client devices. These 

elements interact with each other such that model training 

can be done across multiple devices while maintaining data 

privacy and lowering communication costs. [7-11] The 

Federated Learning System consists of a Central Server and 

multiple Client Devices and is located in the center of the 

diagram. The aggregate model updates, validate the models, 

and distributes the global model to the clients from the 

central server. Local model and training data about the client 

devices’ environment is kept in each client device and used 

by them to improve the global model by periodically sending 

updates to the central server. One feature of this 

decentralized approach is that training on sensitive data does 

not require subjecting it to external systems in this fashion, 

maintaining privacy and security. 
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Fig. 1 Federated Learning API Architectures 
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The API Layer is divided into two major parts: GraphQL 

API and REST API. Query parsing, defining data schemas, 

resolving responses, etc., are handled by the GraphQL API. 

It enables users to ask for particular insights (e.g. check if the 

model is trained or fetch predictive analytics results) in the 

best way, neither over-fetching extra data nor under-fetching 

crucial data. However, unlike the REST API, data fetching, 

model updates and federated model requests are handled by 

the REST API for lightweight communication between 

distributed nodes. By properly combining these two API 

architectures, the communication in the FL system can be 

optimized by reducing bandwidth usage and increasing 

model synchronization efficiency, respectively. 

 

Data Services features two parts: Data Storage and a 

Query Engine. Data filtering and query optimization are 

carried out by the Query Engine for GraphQL and REST API 

requests that are processed efficiently. At the same time, the 

data storage stores historical and processed metadata that can 

be used for model evaluation and improvement. The 

structured data flow ensures that federated learning updates 

are secure and efficient and that model aggregation is 

smooth. 

 

External data sources help provide training data to the 

federated learning system. These external data feeds, which 

enrich the training input and diversify train input, help to 

improve the model accuracy with strict privacy control. 

REST and GraphQL APIs work together efficiently and in a 

decentralized manner to facilitate how the communication 

between the central server (related to an API server), client 

device (the application to be built) and data sources follows. 

It allows for scalability, security, as well as adaptability and 

thus makes federated learning better suited for real-world 

applications. 

 

3.2. System Design 

The federated learning system architecture works upon 

REST and GraphQL APIs so that secure, scalable, and 

efficient communications are achieved to the federated client 

devices and a central aggregation server. They consist of 

client devices, API layer, central server and data services, 

which are some of the key elements for decentralized 

machine learning. 

 

The federated learning module is placed at the core of 

the system and runs on client devices, which facilitates local 

model training. These devices compute on their own datasets 

and send updates only to a central server that aggregates the 

model updates. These updates are validated by the central 

server, integrated into a global model in order to localize, and 

then fed to the clients for new training. This is an iterative 

process that keeps the user’s privacy when learning. 

 

The central server is then connected to the client devices 

through the API layer as a communication channel. Primarily 

used for updating models, fetching data, and federating 

model requests, REST APIs are used to communicate with 

minimal weight and efficiency. On the other hand, the way of 

querying GraphQL APIs is more flexible as well, and it will 

deliver the users and devices only required model insights, 

historical analytics, or training metadata without data 

transfer. Using the above hybrid approach, this paper 

optimizes bandwidth usage and improves the scalability of 

federated learning in environments with heterogeneous 

network conditions. 

 

The system with the matching of the structured metadata 

and efficient query with the data services module. The Query 

Engine also ensures that requests are handled optimally, 

making data processing less computationally expensive 

before sending it to the client. The stored metadata processed 

by the Data Storage component can be used for long-term 

analysis and evaluation of models created during the train 

and project phases. Together, they benefit from creating a 

potent federated learning pipeline that strikes a balance 

between efficiency and safety as well as data privacy. 

 

Enhancements in security are achieved through adding 

differential privacy mechanisms to the system, such that 

individual client updates are anonymous. Furthermore, a 

secure aggregation scheme is introduced to enable the 

feasibility of defense against adversaries by reconstructing 

sensitive data from transmitted model updates. Using 

federated learning along with REST and GraphQL APIs 

combined results in a very agile and privacy-preserving 

architecture that is fit for use in healthcare, finance, and IoT. 

 

3.3. Experimental Setup 

The proposed federated learning system’s performance 

is evaluated in a formulated experimental platform consisting 

of multiple local (client) devices, [12-15] a central 

aggregation server, and an API-based data delivery circuit. 

We experimented with the model’s performance, 

communication efficiency and API responsiveness under 

different circumstances. 

  

The hardware setup consisted of a cluster of edge 

devices, hereafter referred to as federated learning clients. A 

local dataset and computational resources were available for 

model training for each edge device. It aggregated model 

updates and returned the global model to clients in a packet 

sent via a central server that runs on cloud infrastructure. 

This setup was quite similar to how federated learning would 

be deployed in the actual world in healthcare systems, smart 

cities, and industrial IoT networks. The federated learning 

framework for the software stack consisted of implementing 

the TFF in TensorFlow Federated for the federated learning 

framework along with REST and GraphQL APIs in FastAPI 

and Apollo Server, respectively. The REST API used model 

update transmissions to facilitate model update transmissions 

in combination with GraphQL to handle complex queries for 
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model insights and analytics. Metadata, including the model 

versions and client training history, was stored in a 

PostgreSQL database. 

 

Different experiments were run under different network 

conditions, including low bandwidth and high latency 

networks. The major contributing parameters in the 

evaluation were training accuracy, convergence time, latency 

in api response and bandwidth consumption. The results 

were analyzed to understand how REST and GraphQL APIs 

affect federated learning efficiency if that network resource 

is constrained. 

 

Therefore, security is also evaluated by simulated 

attacks on adversaries like model poisoning and data leakage 

attempts. We assessed differential privacy and secure 

aggregation techniques for their effectiveness (on the model 

robustness) to the point where they were adopted. The 

findings provided valuable insights into the trade-offs 

between security, communication efficiency and model 

accuracy in federated learning deployments. 

 

3.4. Comparison of traditional REST API architecture and 

GraphQL Federation for service integration 

The REST architecture emphasizes the role of the 

centralized API gateway as a mediator between the API 

clients and backend services on the left. Each service is 

exposed through endpoints on defined routes for the client 

requests within the API gateway, which will route the ones to 

the proper service provider. While simple, there are issues 

with this design if a client needs data from several services 

that frequently result in over-fetching or under-fetching of 

data. GraphQL Federation is moved to the right side of the 

image and replaces a more rigid and static approach. 

However, the federation gateway provides an entry point for 

API clients but operates differently from a traditional API 

gateway. The federation gateway integrates multiple 

subgraphs, each representing a separate service, rather than 

routing them statically. Federation gateway works simply by 

stitching up these subgraphs’ schema rather than their 

underlying data to create a unified API. This allows clients to 

only ask for the required data and helps make the system 

more modular, scalable and efficient. 

 

Fig. 2 Comparison of traditional REST API architecture and GraphQL Federation for service integration 
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APIs affect model training, communication efficiency, and 

overall system security in the federated learning 

environment. Results show how decentralized learning 

settings are affected based on the investigated API 

architectures about data exchange, convergence time, and 

privacy preservation. 

 

4.1. Quantitative Results 

Following that, experiments were conducted under 

different bandwidth conditions and client configurations to 

measure the effectiveness of REST and GraphQL in 

federated learning. The metrics that were taken into 

consideration are the convergence time, model accuracy, the 

API response latency and the bandwidth consumption. They 

calculate how each API architecture affects the efficiency of 

federated model training and communication overheads. 

 

GraphQL achieves an order of magnitude bandwidth 

efficiency increase over REST, enabling clients to make 

fewer requests for the data they need, reducing redundant 

requests. Because of the ability to optimize data exchange, 

the response latency of APIs is reduced, improving the 

overall responsiveness of federated learning applications. 

Moreover, federated learning models using GraphQL have a 

convergence time of approximately 10–15% faster than 

REST. The more efficient transmission of the model updates 

with respect to this state leads to a faster stabilization of the 

global model. 

 

High bandwidth environments model accuracy improves 

because devices can transmit more precise updates without 

constraints. GraphQL has an edge in low bandwidth 

conditions due to optimizing data retrieval to guarantee that 

critical updates get to the central aggregator efficiently. It 

verifies that GraphQL is better for federated learning, 

especially when bandwidth optimization is essential to the 

system’s performance. 

 
Table 1. Performance Comparison of REST and GraphQL APIs in Federated Learning 

Metric 
REST API (Low 

Bandwidth) 

GraphQL API 

(Low Bandwidth) 

REST API (High 

Bandwidth) 

GraphQL API 

(High Bandwidth) 

Model Accuracy (%) 86.5% 87.3% 89.1% 89.8% 

Convergence Time 

(s) 
480 420 320 280 

API Response 

Latency (ms) 
120 85 80 50 

Bandwidth 

Consption (MB) 
150 110 130 90 

Fig. 3 Graphical Representations of Performance Comparison of REST and GraphQL APIs in Federated Learning 
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4.2. Qualitative Insights 

Numerical evaluations and a qualitative evaluation of the 

developer experience, API maintainability, and integration to 

federated learning frameworks were done. The most 

prominent was the flexibility of data retrieval. This ability 

allowed for easier definition of the required data fields for 

inspecting models without over-fetching unnecessary 

information, which Gupta states is developers’ favourite 

reason for choosing GraphQL. In comparison, REST APIs 

had redundant data transfer because of the need for multiple 

endpoints for different requests. 

 

REST APIs were easier to set up, which made them 

preferable for smaller federated learning deployments. But 

with systems becoming more complex, we found that to be 

more scalable and more manageable, GraphQL’s better 

maintainability stood out because it’s a schema-based API 

structure. For REST developers, it was hard to manage 

multiple endpoints, while integrated assistance from 

federated learning models was made simple on GraphQL due 

to its unified query approach. 

 

Different strengths and challenges in each API 

architecture were also analyzed, as well as security 

considerations. Authentication for the REST APIs was 

provided throughout JWT and was easy to secure overall. 

Nevertheless, graphQL brought along some risks concerning 

the complexity of the query, and misconfigured access 

control could expose data you didn’t intend. In order to 

account for these risks, depth restrictions and validation 

methods were introduced to restrict the requests that clients 

could make. Even with these limitations, GraphQL’s 

approach to structuring the data access gave more control to 

the flow of information, which made its application more 

secure when properly handled. 

 
Table 2. Scalability of REST vs. GraphQL APIs in Federated Learning 

Number of Clients 
REST API - Avg. 

Latency (ms) 

GraphQL API - 

Avg. Latency (ms) 

REST API - 

Bandwidth (MB) 

GraphQL API - 

Bandwidth (MB) 

50 Clients 95 70 80 60 

100 Clients 140 90 120 85 

200 Clients 210 135 190 120 

500 Clients 320 210 320 190 

 

Fig. 4 Graphical Representations of Scalability of REST vs. GraphQL APIs in Federated Learning 
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4.3. Scalability and Security Analysis 

The scalability was assessed by running experiments 

where the number of clients was steadily increased. Results 

show that GraphQL has much better scaling than REST: 

latency and bandwidth, while the number of added clients 

does not increase. The trouble with a REST API-based 

architecture was that as client numbers grew, latency spikes 

quartered due to the requirement for multiple endpoint 

interactions. On the other hand, GraphQL can bring all the 

requested data in a single request, decreasing the 

communication overhead; in return, it can handle a bigger 

client base. 

 

Privacy protection, authentication mechanisms, and 

adversarial resistance were explored from the point of 

security. Differential privacy techniques enhanced the 

federated model of privacy so that personal client 

contributions would remain anonymous. REST and GraphQL 

used OAuth 2.0 for authentication, with GraphQL needing 

one extra query depth restriction to prevent unauthorized data 

access. 

 

Model poisoning attacks were simulated where the 

compromised clients tried to inject wrong updates into the 

federated learning system to evaluate adversarial resilience. 

Analysis of these threats revealed that secure aggregation 

techniques keep these up to minimal effect on the global 

model and thus do not seriously mitigate them. Our results 

further validate the need for secure mechanisms in federated 

learning. GraphQL-based APIs provide significant query 

flexibility that can be used and demonstrate the need for 

robust mechanisms, particularly when deploying GraphQL-

based federated learning APIs. 

 

5. Discussion 
API architectures in optimizing the federated learning 

systems. By regularly responding to those series, it was 

found that REST consistently performed worse than 

GraphQL in terms of bandwidth efficiency, response latency 

and scalability, highlighting better performance for GraphQL 

in the case of decentralized machine learning applications. 

The smaller data sets it could fetch had the bonus of reducing 

unnecessary network load and thus could converge faster. 

For example, in contrast, REST APIs suffered from under-

fetching and endpoint proliferation, leading to high data 

transfer costs and slow training in large-scale federations. It’s 

important to note that one of those is efficient API design for 

federated learning, especially on networks where latency 

plays a role. 

 

Security is still a big point to ponder about. REST, as well as 

GraphQL, would get some benefit from OAuth-based 

authentication and differential privacy techniques. However, 

GraphQL would execute queries differently due to its loss in 

terms of unauthorized data access and complex query 

processing. Properly implementing query depth restrictions, 

schema validation, and access control are required to avoid 

data leakage. Missile federated learning systems additionally 

need robust, secure aggregation mechanisms to defend 

against adversary attacks like model poisoning. Future work 

will also be required to best achieve GraphQL security 

without losing scalability advantages, thus ensuring federated 

learning remains efficient and privacy-preserving in a wide 

spectrum of deployments. 

 

6. Conclusion 
The research in this study focused on the role played by 

REST and GraphQL APIs in the context of federated 

learning, examining how these APIs affect the accuracy of 

the trained model, the convergence time, the bandwidth 

efficiency and so forth. Experimental results showed that 

GraphQL outperforms REST in terms of data retrieval 

efficiency and scaling in the system up to a significant 

degree, making it a more appropriate solution for federated 

learning to handle bandwidth-constrained environments. 

GraphQL helps reduce redundant data transfer and reduce 

latency of API response to enable faster model updates and 

improve overall system performance. Although REST is a 

suitable option for simpler deployments, it is quite stable and 

reliable when its implementation is easy to use and security 

mechanisms are well-established. 

 

While easy to work with, security concerns to allow 

unauthorized data access and complexity risks in querying 

still need to be addressed. The study showed that differential 

privacy, secure aggregation, and access control are the 

safeguard techniques for making federated learning models 

secure against adversarial threats. The next step of the 

research should be to improve GraphQL’s security and keep 

its efficiency or to explore a hybrid API architecture 

combining REST and GraphQL’s advantages. In the ongoing 

evolution of federated learning, API architecture must be 

selected that scales well, maintains maximum privacy and 

promises fast performance. 
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