
International Journal of Computer Trends and Technology Volume 73 Issue 3, 83-91, March 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I3P111 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Federated Learning and API Architectures: Investigating

REST API and GraphQL for Decentralized Predictive

Analytics

Ramesh Kasarla

Comcast Cable Communications, VA, USA.

Corresponding Author : Ramesh.kasarla@gmail.com

Received: 18 January 2025 Revised: 23 February 2025 Accepted: 15 March 2025 Published: 29 March 2025

Abstract - Federated learning (FL) is a game-changing methodology for distributed machine learning that allows training

models across many edge devices without centralizing sensitive data. Here, this technique is especially useful for privacy-

sensitive applications like financial, healthcare, or IoT, where the technique helps solve the issue of predictive analytics.

However, the communication and coordination of models between distributed nodes remains a critical issue. In this paper, the

role of the API architectures in providing the federation learning workflows with a focus on REST and GraphQL are analyzed.

Rest APIs are widely popular because of their simplicity and stateless nature, which lends them to lightweight communication

in FL environments.

Nevertheless, GraphQL gives clients more flexibility and greater efficiency by allowing them to just ask for the

information they require, rather than fetching all data as in a traditional setup, which is a very important feature for

decentralized systems. In the FL context, we consider data synchronization, model aggregation, and access controls and

analyze the performance, security, and scalability of the two API paradigms. We also discuss how to best design APIs for such

federated model training while meeting data protection regulations. This study compares the flexibility of REST and GraphQL

to distributed models of artificial intelligence in providing insights on best practices of API design for decentralized federated

prediction.

Keywords - Federated Learning, REST API, GraphQL, Decentralized Machine Learning, Predictive Analytics, API

Architectures, Model Aggregation.

1. Introduction

The predictive analytics industry has struggled to

successfully apply classification models to data residing in

distributed systems across edge devices, IoT networks and

enterprise systems, as the growth in data means is happening

so fast. Most of the traditional machine learning approaches

depend on data aggregation in a centralized way and thus

create issues in terms of privacy, security, and data

protection regulation compliance. Since raw data do not need

to be sent to a central server, [1-3] Federated Learning (FL)

provides an attractive solution for training machine learning

models in a decentralized way across multiple nodes. Despite

preserving privacy, this approach makes it possible to build

robust predictive models. Nevertheless, federated learning

requires efficient communication, which means sharing

models, aggregating them, and synchronizing them.

1.1. The Role of API Architectures in Federated Learning

Federated communication systems come in the form of

Application Programming Interfaces (APIs), which allow for

easy communication between client devices, model

aggregators, and central servers. The stateless design,

simplicity and scalability of REST (Representational State

Transfer) APIs have been longstanding dominant

architecture. In particular, their structure will be rigid in

federated environments where data exchange ‘on the spot’

may imply a diverse set of needs between different clients.

Since GraphQL is a more flexible alternative allowing clients

to request the data field they need, bandwidth consumption

and redundant transmissions can be reduced. To design

efficient decentralized predictive analytics systems, it is

important to understand how the abovementioned API

architectures affect the performance of federated learning.

1.2. Challenges in Decentralized Predictive Analytics

Federated learning inherently faces a number of

challenges, such as communication overhead, data

heterogeneity and security risk. All too often, using an API

frequently necessitates the exchange of model updates

between many nodes - high bandwidth consumption makes

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Ramesh Kasarla / IJCTT, 73(3), 83-91, 2025

84

performance optimization crucial to doing this efficiently. In

addition, the data sources, device capabilities, and network

conditions federated systems need to support are diverse and

need adaptable communication frameworks. Second, it is a

major concern with respect to security, as FL models to this

day remain susceptible to adversarial attacks, model

poisoning, and data leakage. In API architectures, the

authentication, encryption and access control mechanisms

have to be robust to mitigate these risks.

2. Related Work
2.1. Federated Learning Frameworks

Federated Learning (FL) has become increasingly

popular because it allows training the machine learning

models across distributed data sources without moving

sensitive data to a central repository. Several FL frameworks,

including Tensor Flow Federated (TFF), are created.

Through two core API layers, Federated Core (FC) API and

Federated Learning (FL) API, TFF is devised to [4-6] enable

decentralized machine learning with a low-level API to

define computations distributed and a high-level API for

seamless integration of existing machine learning models

with federated workflows. With a layered approach, FL

solutions can be jointly developed and deployed efficiently

by AI researchers and systems engineers.

FL frameworks include PySyft, which secures and

retains the privacy of the federated learning in a way that

utilizes encrypted model updates, and FedML, an open

research orient themselves library for federated learning and

various computing environments. On the other hand, FL has

also been looked into where models are trained locally on

devices and centrally aggregated at the server. The proposed

researchers have suggested using REST APIs to

communicate with central servers and the edge nodes to

perform the model training without compromising privacy.

Such architectures are highly relevant in domains where it is

not feasible to store centralized data for legal or technical

reasons (e.g., healthcare, finance).

2.2. API Architectures: REST vs. GraphQL

Federated learning is the API that enables efficient

communication between participating nodes. REST APIs are

traditionally the main architecture used in client-server

interaction; they are stateless and scalable approaches. Since

REST APIs have fixed endpoints for retrieving and updating

resources, they are simple and widely compatible. REST,

however, suffers from over-fetching (getting too much

information) and under-fetching (requiring multiple requests

to gather complete information), making the bandwidth-

sensitive FL environment inefficient.

GraphQL offers a more dynamic and flexible API that

allows clients to express exactly what they need with the

same request. Unlike REST, where multiple endpoints are

required for different resources, GraphQL performs via a

single endpoint, which is more efficient and saves costs in

sending and receiving data. GraphQL’s strongly typed

schema also helps with the accuracy and validation of

queries and API documentation. GraphQL is also useful in

federated learning, where federated APIs can be created

using different services’ schemas as a unified API. This

approach improves modularity, scalability, and adaptability

in FL deployments.

2.3. Architectural Patterns in Federated Learning

Federated learning architectures are influenced

extensively by their design, which in turn highly affects the

performance, scalability, and security of these architectures.

Different studies have proven that microservice-based

architecture is a suitable approach for FL. Structured as

microservices to support workload distribution and system

maintainability, separate components of FL (model

aggregation, client coordination, and API communication in

particular) allow organizations to reduce their component

complexity and maintain their efficiency. Furthermore,

microservices allow for greatly improving fault isolation and

resource optimization on such large-scale federated

deployments. Architectural pattern pull in the techniques of

differential privacy in federated learning pipelines. In

differential privacy, model updates are first aggregated while

adding the controlled noise on individual client

contributions, allowing the contributions of individual clients

to remain anonymous. With this approach, the regulatory

compliance level of data protection laws like GDPR and

HIPAA is improved, as well as ensuring the user's trust. In

order to achieve differential privacy within FL frameworks, a

significant need for careful API design is in handling secure

aggregation, encrypted data transmission, as well as privacy-

preserving computations.

3. Methodology

3.1. API Architectures

The integration was made possible with REST and

GraphQL APIs in the Federated Learning (FL) system for

decentralized model training and predictive analytics. The

architecture has several core components, including a central

server, data services, an API layer, and client devices. These

elements interact with each other such that model training

can be done across multiple devices while maintaining data

privacy and lowering communication costs. [7-11] The

Federated Learning System consists of a Central Server and

multiple Client Devices and is located in the center of the

diagram. The aggregate model updates, validate the models,

and distributes the global model to the clients from the

central server. Local model and training data about the client

devices’ environment is kept in each client device and used

by them to improve the global model by periodically sending

updates to the central server. One feature of this

decentralized approach is that training on sensitive data does

not require subjecting it to external systems in this fashion,

maintaining privacy and security.

Ramesh Kasarla / IJCTT, 73(3), 83-91, 2025

85

Fig. 1 Federated Learning API Architectures

Global Model

Storage

Federated

Aggregator

Model Validation

Central Server

Local Model Training Data

Federated Learning

Module

ClientDevice1

ClientDevice2

External Data Source

Data Filtering Query Optimization

Query Engine

Processed

Metadata

Historical

Data

Rest API

User

GraphQL API

GraphQL Queries

(Insights/Model Status)

Provide Data

Updates

Query Data

Schema

Retrieve Data

Data Storage
Provide Data

Updates

Push Model Updates

Send Updated

Global Model

Federated Learning System

Query Parser

Data Schema

Response

Resolver

Data Fetching

Model Updates

Federated

Model

Requests

GraphQL_API REST_API

API Layer

Ramesh Kasarla / IJCTT, 73(3), 83-91, 2025

86

The API Layer is divided into two major parts: GraphQL

API and REST API. Query parsing, defining data schemas,

resolving responses, etc., are handled by the GraphQL API.

It enables users to ask for particular insights (e.g. check if the

model is trained or fetch predictive analytics results) in the

best way, neither over-fetching extra data nor under-fetching

crucial data. However, unlike the REST API, data fetching,

model updates and federated model requests are handled by

the REST API for lightweight communication between

distributed nodes. By properly combining these two API

architectures, the communication in the FL system can be

optimized by reducing bandwidth usage and increasing

model synchronization efficiency, respectively.

Data Services features two parts: Data Storage and a

Query Engine. Data filtering and query optimization are

carried out by the Query Engine for GraphQL and REST API

requests that are processed efficiently. At the same time, the

data storage stores historical and processed metadata that can

be used for model evaluation and improvement. The

structured data flow ensures that federated learning updates

are secure and efficient and that model aggregation is

smooth.

External data sources help provide training data to the

federated learning system. These external data feeds, which

enrich the training input and diversify train input, help to

improve the model accuracy with strict privacy control.

REST and GraphQL APIs work together efficiently and in a

decentralized manner to facilitate how the communication

between the central server (related to an API server), client

device (the application to be built) and data sources follows.

It allows for scalability, security, as well as adaptability and

thus makes federated learning better suited for real-world

applications.

3.2. System Design

The federated learning system architecture works upon

REST and GraphQL APIs so that secure, scalable, and

efficient communications are achieved to the federated client

devices and a central aggregation server. They consist of

client devices, API layer, central server and data services,

which are some of the key elements for decentralized

machine learning.

The federated learning module is placed at the core of

the system and runs on client devices, which facilitates local

model training. These devices compute on their own datasets

and send updates only to a central server that aggregates the

model updates. These updates are validated by the central

server, integrated into a global model in order to localize, and

then fed to the clients for new training. This is an iterative

process that keeps the user’s privacy when learning.

The central server is then connected to the client devices

through the API layer as a communication channel. Primarily

used for updating models, fetching data, and federating

model requests, REST APIs are used to communicate with

minimal weight and efficiency. On the other hand, the way of

querying GraphQL APIs is more flexible as well, and it will

deliver the users and devices only required model insights,

historical analytics, or training metadata without data

transfer. Using the above hybrid approach, this paper

optimizes bandwidth usage and improves the scalability of

federated learning in environments with heterogeneous

network conditions.

The system with the matching of the structured metadata

and efficient query with the data services module. The Query

Engine also ensures that requests are handled optimally,

making data processing less computationally expensive

before sending it to the client. The stored metadata processed

by the Data Storage component can be used for long-term

analysis and evaluation of models created during the train

and project phases. Together, they benefit from creating a

potent federated learning pipeline that strikes a balance

between efficiency and safety as well as data privacy.

Enhancements in security are achieved through adding

differential privacy mechanisms to the system, such that

individual client updates are anonymous. Furthermore, a

secure aggregation scheme is introduced to enable the

feasibility of defense against adversaries by reconstructing

sensitive data from transmitted model updates. Using

federated learning along with REST and GraphQL APIs

combined results in a very agile and privacy-preserving

architecture that is fit for use in healthcare, finance, and IoT.

3.3. Experimental Setup

The proposed federated learning system’s performance

is evaluated in a formulated experimental platform consisting

of multiple local (client) devices, [12-15] a central

aggregation server, and an API-based data delivery circuit.

We experimented with the model’s performance,

communication efficiency and API responsiveness under

different circumstances.

The hardware setup consisted of a cluster of edge

devices, hereafter referred to as federated learning clients. A

local dataset and computational resources were available for

model training for each edge device. It aggregated model

updates and returned the global model to clients in a packet

sent via a central server that runs on cloud infrastructure.

This setup was quite similar to how federated learning would

be deployed in the actual world in healthcare systems, smart

cities, and industrial IoT networks. The federated learning

framework for the software stack consisted of implementing

the TFF in TensorFlow Federated for the federated learning

framework along with REST and GraphQL APIs in FastAPI

and Apollo Server, respectively. The REST API used model

update transmissions to facilitate model update transmissions

in combination with GraphQL to handle complex queries for

Ramesh Kasarla / IJCTT, 73(3), 83-91, 2025

87

model insights and analytics. Metadata, including the model

versions and client training history, was stored in a

PostgreSQL database.

Different experiments were run under different network

conditions, including low bandwidth and high latency

networks. The major contributing parameters in the

evaluation were training accuracy, convergence time, latency

in api response and bandwidth consumption. The results

were analyzed to understand how REST and GraphQL APIs

affect federated learning efficiency if that network resource

is constrained.

Therefore, security is also evaluated by simulated

attacks on adversaries like model poisoning and data leakage

attempts. We assessed differential privacy and secure

aggregation techniques for their effectiveness (on the model

robustness) to the point where they were adopted. The

findings provided valuable insights into the trade-offs

between security, communication efficiency and model

accuracy in federated learning deployments.

3.4. Comparison of traditional REST API architecture and

GraphQL Federation for service integration

The REST architecture emphasizes the role of the

centralized API gateway as a mediator between the API

clients and backend services on the left. Each service is

exposed through endpoints on defined routes for the client

requests within the API gateway, which will route the ones to

the proper service provider. While simple, there are issues

with this design if a client needs data from several services

that frequently result in over-fetching or under-fetching of

data. GraphQL Federation is moved to the right side of the

image and replaces a more rigid and static approach.

However, the federation gateway provides an entry point for

API clients but operates differently from a traditional API

gateway. The federation gateway integrates multiple

subgraphs, each representing a separate service, rather than

routing them statically. Federation gateway works simply by

stitching up these subgraphs’ schema rather than their

underlying data to create a unified API. This allows clients to

only ask for the required data and helps make the system

more modular, scalable and efficient.

Fig. 2 Comparison of traditional REST API architecture and GraphQL Federation for service integration

GraphQL Federation has the ability to decentralize

service definitions. Individual services manage the GraphQL

schemas, each representing an application service as a

subgraph. [16] This frees teams to develop abstractions in

isolated environments without painlessly delegating those

abstractions to a single gateway. However, traditional REST

architecture may become challenging due to the rigidity it

creates through updates or adds, wherein such introductions

or updates are very involved and necessitate related

protuberances in every portion of the system. Given that the

dynamic needs of federated learning models align well with

the predictive analytics in decentralized systems, the

GraphQL Federation approach is suitable for predictive

analytics in federated learning models. GraphQL subgraphs

allow you to expose only what is necessary from clients,

services, and client devices, marking the data transport

efficiently and preserving privacy. However, the REST

architecture will still be useful for simple predefined

operations where repeated querying of specific services is

required.

4. Results and Analysis
In this section, we present the results of the experimental

setup for, quantitatively, the performance metrics,

qualitatively the insights we find out of it, and subjectively,

scalability and security. It studies how REST and GraphQL

API Clients

API Gateway

Service Service Service Service

API Gateway

Federation Gateway

Traditional API Architecture eg. REST GraphQL Federation

Ramesh Kasarla / IJCTT, 73(3), 83-91, 2025

88

APIs affect model training, communication efficiency, and

overall system security in the federated learning

environment. Results show how decentralized learning

settings are affected based on the investigated API

architectures about data exchange, convergence time, and

privacy preservation.

4.1. Quantitative Results

Following that, experiments were conducted under

different bandwidth conditions and client configurations to

measure the effectiveness of REST and GraphQL in

federated learning. The metrics that were taken into

consideration are the convergence time, model accuracy, the

API response latency and the bandwidth consumption. They

calculate how each API architecture affects the efficiency of

federated model training and communication overheads.

GraphQL achieves an order of magnitude bandwidth

efficiency increase over REST, enabling clients to make

fewer requests for the data they need, reducing redundant

requests. Because of the ability to optimize data exchange,

the response latency of APIs is reduced, improving the

overall responsiveness of federated learning applications.

Moreover, federated learning models using GraphQL have a

convergence time of approximately 10–15% faster than

REST. The more efficient transmission of the model updates

with respect to this state leads to a faster stabilization of the

global model.

High bandwidth environments model accuracy improves

because devices can transmit more precise updates without

constraints. GraphQL has an edge in low bandwidth

conditions due to optimizing data retrieval to guarantee that

critical updates get to the central aggregator efficiently. It

verifies that GraphQL is better for federated learning,

especially when bandwidth optimization is essential to the

system’s performance.

Table 1. Performance Comparison of REST and GraphQL APIs in Federated Learning

Metric
REST API (Low

Bandwidth)

GraphQL API

(Low Bandwidth)

REST API (High

Bandwidth)

GraphQL API

(High Bandwidth)

Model Accuracy (%) 86.5% 87.3% 89.1% 89.8%

Convergence Time

(s)
480 420 320 280

API Response

Latency (ms)
120 85 80 50

Bandwidth

Consption (MB)
150 110 130 90

Fig. 3 Graphical Representations of Performance Comparison of REST and GraphQL APIs in Federated Learning

84.00%

85.00%

86.00%

87.00%

88.00%

89.00%

90.00%

91.00%

1 2 3 4

Model Accuracy (%)

Model Accuracy (%)

Ramesh Kasarla / IJCTT, 73(3), 83-91, 2025

89

4.2. Qualitative Insights

Numerical evaluations and a qualitative evaluation of the

developer experience, API maintainability, and integration to

federated learning frameworks were done. The most

prominent was the flexibility of data retrieval. This ability

allowed for easier definition of the required data fields for

inspecting models without over-fetching unnecessary

information, which Gupta states is developers’ favourite

reason for choosing GraphQL. In comparison, REST APIs

had redundant data transfer because of the need for multiple

endpoints for different requests.

REST APIs were easier to set up, which made them

preferable for smaller federated learning deployments. But

with systems becoming more complex, we found that to be

more scalable and more manageable, GraphQL’s better

maintainability stood out because it’s a schema-based API

structure. For REST developers, it was hard to manage

multiple endpoints, while integrated assistance from

federated learning models was made simple on GraphQL due

to its unified query approach.

Different strengths and challenges in each API

architecture were also analyzed, as well as security

considerations. Authentication for the REST APIs was

provided throughout JWT and was easy to secure overall.

Nevertheless, graphQL brought along some risks concerning

the complexity of the query, and misconfigured access

control could expose data you didn’t intend. In order to

account for these risks, depth restrictions and validation

methods were introduced to restrict the requests that clients

could make. Even with these limitations, GraphQL’s

approach to structuring the data access gave more control to

the flow of information, which made its application more

secure when properly handled.

Table 2. Scalability of REST vs. GraphQL APIs in Federated Learning

Number of Clients
REST API - Avg.

Latency (ms)

GraphQL API -

Avg. Latency (ms)

REST API -

Bandwidth (MB)

GraphQL API -

Bandwidth (MB)

50 Clients 95 70 80 60

100 Clients 140 90 120 85

200 Clients 210 135 190 120

500 Clients 320 210 320 190

Fig. 4 Graphical Representations of Scalability of REST vs. GraphQL APIs in Federated Learning

0

50

100

150

200

250

300

350

REST API - Avg.

Latency (ms)

GraphQL API - Avg.

Latency (ms)

REST API - Bandwidth

(MB)

GraphQL API -

Bandwidth (MB)

50 Clients

100 Clients

200 Clients

500 Clients

Ramesh Kasarla / IJCTT, 73(3), 83-91, 2025

90

4.3. Scalability and Security Analysis

The scalability was assessed by running experiments

where the number of clients was steadily increased. Results

show that GraphQL has much better scaling than REST:

latency and bandwidth, while the number of added clients

does not increase. The trouble with a REST API-based

architecture was that as client numbers grew, latency spikes

quartered due to the requirement for multiple endpoint

interactions. On the other hand, GraphQL can bring all the

requested data in a single request, decreasing the

communication overhead; in return, it can handle a bigger

client base.

Privacy protection, authentication mechanisms, and

adversarial resistance were explored from the point of

security. Differential privacy techniques enhanced the

federated model of privacy so that personal client

contributions would remain anonymous. REST and GraphQL

used OAuth 2.0 for authentication, with GraphQL needing

one extra query depth restriction to prevent unauthorized data

access.

Model poisoning attacks were simulated where the

compromised clients tried to inject wrong updates into the

federated learning system to evaluate adversarial resilience.

Analysis of these threats revealed that secure aggregation

techniques keep these up to minimal effect on the global

model and thus do not seriously mitigate them. Our results

further validate the need for secure mechanisms in federated

learning. GraphQL-based APIs provide significant query

flexibility that can be used and demonstrate the need for

robust mechanisms, particularly when deploying GraphQL-

based federated learning APIs.

5. Discussion
API architectures in optimizing the federated learning

systems. By regularly responding to those series, it was

found that REST consistently performed worse than

GraphQL in terms of bandwidth efficiency, response latency

and scalability, highlighting better performance for GraphQL

in the case of decentralized machine learning applications.

The smaller data sets it could fetch had the bonus of reducing

unnecessary network load and thus could converge faster.

For example, in contrast, REST APIs suffered from under-

fetching and endpoint proliferation, leading to high data

transfer costs and slow training in large-scale federations. It’s

important to note that one of those is efficient API design for

federated learning, especially on networks where latency

plays a role.

Security is still a big point to ponder about. REST, as well as

GraphQL, would get some benefit from OAuth-based

authentication and differential privacy techniques. However,

GraphQL would execute queries differently due to its loss in

terms of unauthorized data access and complex query

processing. Properly implementing query depth restrictions,

schema validation, and access control are required to avoid

data leakage. Missile federated learning systems additionally

need robust, secure aggregation mechanisms to defend

against adversary attacks like model poisoning. Future work

will also be required to best achieve GraphQL security

without losing scalability advantages, thus ensuring federated

learning remains efficient and privacy-preserving in a wide

spectrum of deployments.

6. Conclusion
The research in this study focused on the role played by

REST and GraphQL APIs in the context of federated

learning, examining how these APIs affect the accuracy of

the trained model, the convergence time, the bandwidth

efficiency and so forth. Experimental results showed that

GraphQL outperforms REST in terms of data retrieval

efficiency and scaling in the system up to a significant

degree, making it a more appropriate solution for federated

learning to handle bandwidth-constrained environments.

GraphQL helps reduce redundant data transfer and reduce

latency of API response to enable faster model updates and

improve overall system performance. Although REST is a

suitable option for simpler deployments, it is quite stable and

reliable when its implementation is easy to use and security

mechanisms are well-established.

While easy to work with, security concerns to allow

unauthorized data access and complexity risks in querying

still need to be addressed. The study showed that differential

privacy, secure aggregation, and access control are the

safeguard techniques for making federated learning models

secure against adversarial threats. The next step of the

research should be to improve GraphQL’s security and keep

its efficiency or to explore a hybrid API architecture

combining REST and GraphQL’s advantages. In the ongoing

evolution of federated learning, API architecture must be

selected that scales well, maintains maximum privacy and

promises fast performance.

References
[1] G. Anthony Reina et al., “OpenFL: An Open-Source Framework for Federated Learning,” Arxiv, pp. 1-22, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

[2] Nicolas Kourtellis, Kleomenis Katevas, and Diego Perinom, “FLaaS: Federated Learning as a Service,” Proceedings of the 1st

Workshop on Distributed Machine Learning, Barcelona Spain, pp. 7-13, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[3] Ivan Kholod et al., “Open-Source Federated Learning Frameworks for IoT: A Comparative Review and Analysis,” Sensors, vol. 21, no.

1, pp. 1-22, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.48550/arXiv.2105.06413
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=OpenFL%3A+An+Open-Source+Framework+for+Federated+Learning&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=OpenFL%3A+An+Open-Source+Framework+for+Federated+Learning&btnG=
https://arxiv.org/abs/2105.06413
https://doi.org/10.1145/3426745.3431337
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Flaas%3A+Federated+learning+as+a+service&btnG=
https://dl.acm.org/doi/10.1145/3426745.3431337
https://doi.org/10.3390/s21010167
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Open-source+federated+learning+frameworks+for+IoT%3A+A+comparative+review+and+analysis&btnG=
https://www.mdpi.com/1424-8220/21/1/167

Ramesh Kasarla / IJCTT, 73(3), 83-91, 2025

91

[4] Jan Stuecke, Top 7 Open-Source Frameworks for Federated Learning, APHERIS, 2024. [Online]. Available:

https://www.apheris.com/resources/blog/top-7-open-source-frameworks-for-federated-learning

[5] What’s the Difference Between GraphQL and REST?, AWS. [Online]. Available: https://aws.amazon.com/compare/the-difference-

between-graphql-and-rest/

[6] Leon Witt et al., “Decentral and Incentivized Federated Learning Frameworks: A Systematic Literature Review,” IEEE Internet of

Things Journal, vol. 10, no. 4, pp. 3642-3663, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Xiaoyuan Liu et al., “Unified: A Benchmark for Federated Learning Frameworks,” Arxiv, pp. 1-13, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[8] Cross-Silo and Cross-Device Federated Learning on Google Cloud, 2024. [Online]. Available:

https://cloud.google.com/architecture/cross-silo-cross-device-federated-learning-google-cloud

[9] GraphQL, What is Federated Architecture?. [Online]. Available: https://graphql.com/learn/federated-architecture/

[10] Kewei Cheng et al., “SecureBoost: A Lossless Federated Learning Framework,” IEEE Intelligent Systems, vol. 36, no. 6, pp. 87-98,

2021. [CrossRef] [Google Scholar] [Publisher Link]

[11] Matheus Seabra, Marcos Felipe Nazário, and Gustavo Pinto, “REST or GraphQL? A Performance Comparative Study,” Proceedings of

the XIII Brazilian Symposium on Software Components, Architectures, and Reuse, Salvador Brazil, pp. 123-132, 2019. [CrossRef]

[Google Scholar] [Publisher Link]

[12] Sin Kit Lo et al., “Architectural Patterns for the Design of Federated Learning Systems,” Journal of Systems and Software, vol. 191,

2022. [CrossRef] [Google Scholar] [Publisher Link]

[13] Hongyi Zhang, Jan Bosch, and Helena Holmström Olsson, “Federated Learning Systems: Architecture Alternatives,” 2020 27th Asia-

Pacific Software Engineering Conference, Singapore, Singapore, pp. 385-394, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[14] NVIDIA Clara Train 3.1, Federated Learning Background and Architecture. [Online]. Available: https://docs.nvidia.com/clara/clara-

train-archive/3.1/federated-learning/fl_background_and_arch.html

[15] Why GraphQL Needs an Open Federation Approach, TheNewstack. [Online]. Available: https://thenewstack.io/why-graphql-needs-an-

open-federation-approach/

[16] Understanding API Technologies: A Comparative Analysis of REST, GraphQL, and Asynchronous APIs, DZone. [Online]. Available:

https://dzone.com/articles/understand-api-technologies-comparative-analysis

[17] Vijay Anand Rajasekaran et al., “Architectural Patterns for the Design of Federated Learning Systems,” Model Optimization Methods

for Efficient and Edge AI: Federated Learning Architectures, Frameworks and Applications, pp. 223-239, 2025. [CrossRef] [Google

Scholar] [Publisher Link]

[18] Saneev Kumar Das, and SujitBebortta, “Heralding the Future of Federated Learning Framework: Architecture, Tools and Future

Directions,” 2021 11th International Conference on Cloud Computing, Data Science & Engineering, Noida, India, pp. 698-703, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[19] Patrick Foley et al., “OpenFL: The Open Federated Learning Library,” Physics in Medicine & Biology, vol. 67, no. 21, pp. 1-11, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[20] Sayan Guha, and Shreyasi Majumder, “A Comparative Study between Graph-QL & Restful Services in API Management of Stateless

Architectures,” International Journal on Web Service Computing, vol. 11, no. 2, pp. 1-16, 2020. [Google Scholar] [Publisher Link]

[21] Simo Öysti, “REST vs. GraphQL–Building APIs for Abstract Applications,” Thesis, Jyväskylä University of Applied Sciences, pp. 1-70,

2021. [Google Scholar] [Publisher Link]

https://aws.amazon.com/compare/the-difference-between-graphql-and-rest/
https://aws.amazon.com/compare/the-difference-between-graphql-and-rest/
https://doi.org/10.1109/JIOT.2022.3231363
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Decentral+and+incentivized+federated+learning+frameworks%3A+A+systematic+literature+review&btnG=
https://ieeexplore.ieee.org/abstract/document/9997105
https://doi.org/10.48550/arXiv.2207.10308
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Unified%3A+A+benchmark+for+federated+learning+frameworks&btnG=
https://arxiv.org/abs/2207.10308
https://graphql.com/learn/federated-architecture/
https://doi.org/10.1109/MIS.2021.3082561
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Secureboost%3A+A+lossless+federated+learning+framework&btnG=
https://ieeexplore.ieee.org/abstract/document/9440789
https://doi.org/10.1145/3357141.3357149
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=REST+or+GraphQL%3F+A+performance+comparative+study&btnG=
https://dl.acm.org/doi/abs/10.1145/3357141.3357149
https://doi.org/10.1016/j.jss.2022.111357
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Architectural+patterns+for+the+design+of+federated+learning+systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121222000899
https://doi.org/10.1109/APSEC51365.2020.00047
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+learning+systems%3A+Architecture+alternatives&btnG=
https://ieeexplore.ieee.org/abstract/document/9359305
https://dzone.com/articles/understand-api-technologies-comparative-analysis
https://doi.org/10.1002/9781394219230.ch12
https://scholar.google.com/scholar?q=Architectural+Patterns+for+the+Design+of+Federated+Learning+Systems&hl=en&as_sdt=0,5
https://scholar.google.com/scholar?q=Architectural+Patterns+for+the+Design+of+Federated+Learning+Systems&hl=en&as_sdt=0,5
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781394219230.ch12
https://doi.org/10.1109/Confluence51648.2021.9377066
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Heralding+the+future+of+federated+learning+framework%3A+architecture%2C+tools+and+future+directions&btnG=
https://ieeexplore.ieee.org/abstract/document/9377066
https://doi.org/10.1088/1361-6560/ac97d9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=OpenFL%3A+the+open+federated+learning+library&btnG=
https://iopscience.iop.org/article/10.1088/1361-6560/ac97d9/meta
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comparative+Study+Between+Graph-QL+%26+Restful+Services+In+API+Management+Of+Stateless+Architectures&btnG=
https://aircconline.com/ijwsc/V11N2/11220ijwsc01.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=REST+vs.+GraphQL%E2%80%93Building+APIs+for+abstract+applications&btnG=
https://www.theseus.fi/handle/10024/511539

